

Biochemical Pharmacology

Biochemical Pharmacology 68 (2004) 1631-1638

www.elsevier.com/locate/biochempharm

The dietary flavonoids apigenin and (–)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABA_A receptors

Erica L. Campbell^a, Mary Chebib^b, Graham A.R. Johnston^{a,*}

^aDepartment of Pharmacology, The University of Sydney, Sydney 2006, NSW, Australia ^bFaculty of Pharmacy, The University of Sydney, Sydney 2006, NSW, Australia

Received 4 June 2004; accepted 8 July 2004

Abstract

The dietary flavonoids apigenin, genistein and (–)-epigallocatechin gallate (EGCG) inhibited the activation by GABA (40 μ M) of recombinant human $\alpha 1\beta 2\gamma 2L$ GABA_A receptors expressed in *Xenopus laevis* oocytes with IC₅₀ values of 8, 30 and 15 μ M, respectively. Apigenin and genistein also acted as GABA antagonists at flumazenil-insensitive $\alpha 1\beta 2$ GABA_A receptors, indicating that they were not acting as negative modulators through flumazenil-sensitive benzodiazepine sites on GABA_A receptors. In addition to these GABA_A antagonist effects, a novel second order modulatory action was found for apigenin and EGCG on the first order enhancement of GABA responses by diazepam. Apigenin (1 μ M) and EGCG (0.1 μ M) enhanced the modulatory action of diazepam (3 μ M) on the activation by GABA (5 μ M) of recombinant human $\alpha 1\beta 2\gamma 2L$ GABA_A receptors by up to 22% and 52%, respectively. This was not found with genistein, nor was it observed with enhancement by allopregnanolone or pentobarbitone.

Keywords: Apigenin; (-)-Epigallocatechin gallate; Genistein; GABAA receptors; Diazepam; Flavonoids; Modulation; Herbal medicine

1. Introduction

Flavonoids were first linked to GABA_A receptors when three isoflavans isolated from bovine urine were shown to inhibit diazepam binding to brain membranes [1]. They have a range of activities on GABA_A receptors [2], acting as positive and negative modulators of GABA_A receptor function. While many of these actions are sensitive to the benzodiazepine antagonist flumazenil consistent with the ability of flavonoids to inhibit benzodiazepine binding, flumazenil-insensitive actions have also been described indicating that flavonoids can act at sites other than classical benzodiazepine sites on GABA_A receptors. For example, the positive modulatory effects of 6-methylflavone [3] and negative modulatory effects of amentoflavone [4] on recombinant α1β2γ2L GABA_A receptors expressed in oocytes are insensitive to flumazenil. Furthermore, flavonoids are known to inhibit the action of GABA on fluma-

Abbreviation: EGCG, (—)-epigallocatechin gallate.

zenil-insensitive $\rho 1$ GABA_C receptors [5]. The present study describes a novel action of two flavonoids, apigenin and (—)-epigallocatechin gallate (EGCG), that enhance the positive modulation of the activation by GABA of recombinant $\alpha 1\beta 2\gamma 2L$ GABA_A receptors by diazepam.

Apigenin (5,7,4'-trihydroxyflavone, Fig. 1) is a common flavonoid found in a range of plants, including chamomile. The traditional use of chamomile tea as a treatment for insomnia and anxiety led to investigations of its active constituents. Apigenin was proposed to be a benzodiazepine partial agonist and produced potent anxiolysis (and mild sedation at high doses) without any other benzodiazepine-like effects [6]. However, Avallone et al. [7] found that apigenin fitted the profile of a benzodiazepine inverse agonist and was sedative and mildly pro-convulsant, but not anxiolytic. Dekermendjian et al. [8] reported that apigenin fitted the profile of a benzodiazepine antagonist. Thus, apigenin appears to have a variety of effects at the benzodiazepine site of the GABA_A receptor, but the nature of these effects is unclear.

(+)-Catechin and (-)-epicatechin (Fig. 2) are the most common flavans in nature, appearing in many common

^{*} Corresponding author. Tel.: +61 2 9351 6117; fax: +61 2 9351 2891. E-mail address: grahamj@mail.usyd.edu.au (Graham A.R. Johnston).

Fig. 1. Structures of flavone, apigenin, and the isoflavone, genistein.

foods [9,10]. (–)-Epigallocatechin gallate (EGCG, Fig. 2) is the most abundant flavan in tea [10] and is unique in that it has not been found elsewhere in the diet [11]. Thus, EGCG is a prime target for pharmacological investigations into the actions of tea. The traditional use of tea as a cognitive stimulant and a digestive aid is consistent with an action as a GABAA antagonist. This is supported by the finding that tea is pro-convulsant [12]. The most likely candidates for the stimulant ingredients of tea are the flavans, especially EGCG. Catechin, epicatechin and (-)-epigallocatechin gallate have previously been reported to be inactive as inhibitors of benzodiazepine binding [13,14]. Based on the structure-activity model developed by Dekermendjian et al. [8] for flavones acting at the benzodiazepine site, catechin, epicatechin and EGCG would be predicted to be inactive on the benzodiazepine site on GABA_A receptor, as all three lack the 4-carbonyl group, possess a 7-hydroxy group and are non-planar. In addition, EGCG also possesses a large group at the 3 position (the gallate group), a site of steric hindrance in this model. However, this gallate group contains a carbonyl group, which may be able to substitute for the 4-carbonyl of flavones. EGCG has been shown to inhibit the activation of recombinant $\alpha 1\beta 1$ GABA_A receptors expressed in oocytes [15]; classical flumazenil-sensitive sites are not found on these receptors.

The aim of the present study was to examine the effects of apigenin and EGCG, together with some related flavonoids, on the action of GABA on recombinant GABA_A receptors and the enhancement of this action by a benzodiazepine (diazepam) and a steroid (allopregnanolone).

2. Materials and methods

2.1. Materials

(–)-Epigallocatechin gallate, catechin, genistein, daidzein, pentobarbitone sodium and GABA were obtained from Sigma (St. Louis, MO, USA), epicatechin was obtained from ICN (Seven Hills, NSW, Australia), apigenin was obtained from Fluka (Castle Hill, NSW, Australia), 5α -pregnan- 3α -ol-20-one (allopregnanolone) was provided by Dr. Peter Burden (Department of Pharmacol-

Fig. 2. Structures of the flavans, (+)-catechin, (-)-epicatechin and (-)-epigallocatechin.

ogy, The University of Sydney, NSW, Australia), diazepam was obtained as a solution for injection (5 mg/mL) from David Bull Laboratories (Mulgrave North, Vic., Australia) and dimethyl sulfoxide (DMSO) was obtained from APS Finechem (Seven Hills, NSW, Australia). Flumazenil was a gift from Roche (Basle).

2.2. Methods

Xenopus laevis were anæsthetised with 0.17% ethyl 3-aminobenzoate and a lobe of an ovary was removed and rinsed with oocyte releasing buffer, OR2 (82.5 mM NaCl, 2 mM KCl, 1 mM MgCl₂·6H₂O, 5 mM HEPES, pH 7.5). It was then treated with Collagenase A (2 mg/ml of OR2, Bohringer Manheim) for 2 h. The released oocytes were rinsed in modified frog Ringer solution (96 mM NaCl, 2 mM KCl, 1 mM MgCl₂·6H₂O, 1.8 mM CaCl₂, 5 mM HEPES, 2.5 mM pyruvate, 0.5 mM theophylline, 50 ng/ml gentamycin, pH 7.5). Stage V–VI oocytes were collected and stored in this buffer.

Human $\alpha 1$, $\beta 2$ and $\gamma 2L$ cDNA in pcDM8 was provided by Dr. Paul Whiting (Merck, Sharpe and Dohme Research Laboratories, Harlow, UK). Plasmids containing the $\alpha 1$, $\beta 2$ or γ 2L cDNA were linearised using NOT1 enzyme. cRNA was synthesised using the 'mMessage mMachine' kit from Ambion (Austin, TX, USA). cRNA was mixed in a ratio of 1 α 1:1 β 2:1 γ 2L (or 1 α 1:1 β 2) and injected into defolliculated oocytes at a concentration of 50 ng/50 nl. Oocytes were stored for 3-9 days at 16 °C, after which receptor activity was measured by two electrode voltage clamp recording using a Geneclamp 500 amplifier (Axon Instruments, Foster City, CA, USA), a MacLab 2e recorder (AD Instruments, Sydney, NSW, Australia) and Chart version 3.5.2 program. Oocytes were voltage clamped at -60 mVand continuously superfused with frog Ringer solution (96 mM NaCl, 2 mM KCl, 1 mM MgCl₂·6H₂O, 1.8 mM CaCl₂, 5 mM HEPES). For receptor activation measurements, the indicated concentrations of drug were dissolved in a total of 200 µL of DMSO and added to 25 mL of the buffer solution.

2.3. Data analysis

The response was taken to be the maximum change in current during drug application. Data were expressed as a proportion of the response to which they were being compared (usually the response to $40 \mu M$ GABA). In the case of the effects of flavonoids on modulators, the following formula was used: Y = (X-G)/(M-G), where X is the flavonoid response, G is the response to GABA alone and M is the response to GABA in the presence of the modulator (either diazepam or allopregnanolone). These values were entered into GraphPad Prism version 2.0, plotted on a semi-logarithmic scale and analysed using the inbuilt equations. Results from the sigmoidal fit (variable slope) were used. IC₅₀ values represent the concen-

tration required to produce 50% of the maximal inhibition. The equation used was:

$$Y = Bottom + \frac{top - bottom}{1 + 10^{(\log EC_{50} - X)hillslope}}$$

where X is the logarithm of concentration; Y is the response; Y starts at bottom and goes to top with a sigmoid shape. This is identical to the "four parameter logistic equation".

Logarithmically transformed data for dose response curves were also analysed using a linear fit. F and P values cited in this paper are derived from the results of this fit, except for those comparing two curves, in which case the F and P values are derived from a two-way ANOVA analysis. The percent inhibition and percent enhancement values were calculated using the minimum and maximum values obtained from the sigmoidal fit (variable slope) equation, except where otherwise stated. The effects of flumazenil on apigenin, genistein and diazepam were analysed using a repeated measures ANOVA with Bonferroni's post hoc test.

3. Results

3.1. Apigenin

Apigenin (0.1, 1, 10, 100 μM) produced no effect when tested on sham-injected oocytes or on oocytes expressing functional α 1β2γ2L GABA_A receptors. Nor did apigenin (0.1, 0.3, 1, 3, 10, 100 μM) significantly alter responses to 5 μM GABA at α 1β2γ2L GABA_A receptors. It did significantly inhibit responses to 40 μM GABA at α 1β2γ2L GABA_A receptors (n=6; F=51.9, P<0.001). This inhibition reached 49.6%, with an IC₅₀ of 8 μM (95% Cl: 2.5–25.1 μM) and Hill coefficient of –1.2 ± 0.5 (Fig. 3).

Apigenin (30 μ M) significantly inhibited the GABA dose–response curve at $\alpha 1\beta 2\gamma 2L$ GABA_A receptors (n = 5; P < 0.0001; Fig. 4). There was a significant interaction

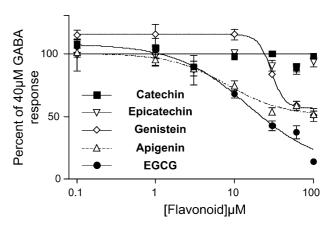


Fig. 3. Effect of apigenin, EGCG, genistein, catechin and epicatechin on the response to 40 μ M GABA in oocytes expressing $\alpha 1\beta 2\gamma 2L$ GABA_A receptors. Apigenin is shown with a dashed line.

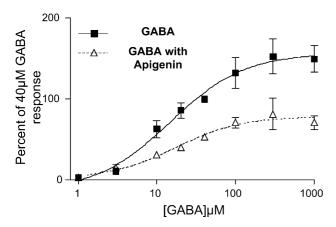


Fig. 4. Inhibition of GABA dose–response curve by 30 μ M apigenin in oocytes expressing $\alpha 1\beta 2\gamma 2L$ GABA_A receptors.

between the effects of GABA and the effects of apigenin (P < 0.0001). This is due to a preferential inhibition of higher doses of GABA. Apigenin reduced the maximal GABA-induced current by 50%.

Low doses of apigenin (Figs. 5 and 6) significantly enhanced the positive modulation of responses to 5 μ M GABA by 3 μ M diazepam by up to 22.5% (n = 3–7; Fig. 5). Significant differences from control were observed at 1, 3 and 6 μ M apigenin (t-test P < 0.006, 0.001 and 0.12, respectively). Flumazenil (1 μ M) significantly inhibited the enhancement of 5 μ M GABA responses by 3 μ M diazepam at α 1 β 2 γ 2L GABAA receptors (mean difference in responses: 88.7%, 95% CI: 74.3–103%, n = 5, t = 20.6, P < 0.001). These conditions represented the maximal flumazenil-sensitive enhancement of 5 μ M GABA responses by 3 μ M diazepam. Thus, the 22.5% enhancement observed for these low doses of apigenin represented a significant increase on the maximum flumazenil-sensitive enhancement of the GABA responses by diazepam.

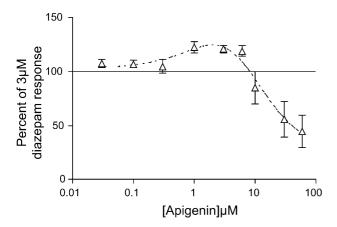


Fig. 5. Effects of apigenin on diazepam-enhanced GABA responces in oocytes expressing $\alpha 1\beta 2\gamma 2L$ GABAA receptors. Responses are expressed as a proportion of the maximal flumazenil-sensitive enhancement of the action of 5 μM GABA by diazepam. Responses in excess of 100% represent increases in enhancement of GABA responses observed in the presence of diazepam alone.

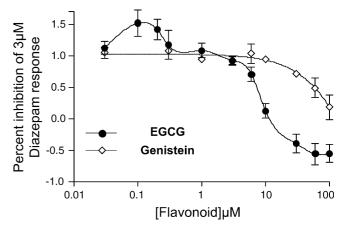


Fig. 6. Effects of EGCG and genistein on diazepam-enhanced GABA responses in oocytes expressing $\alpha 1\beta 2\gamma 2L$ GABAA receptors. Responses are expressed as a proportion of the maximal flumazenil-sensitive enhancement of the action of 5 μM GABA by diazepam. Responses in excess of 100% represent increases in enhancement of GABA responses observed in the presence of diazepam alone. Responses lower than 0% represent inhibition of GABA responses in the absence of diazepam.

At higher doses of apigenin, the inhibitory effects that were seen in the absence of diazepam became apparent (Fig. 5). Inhibition of diazepam enhancement reached a maximum of 55%, with an approximate IC₅₀ of 10 μ M. Due to the biphasic response, this IC₅₀ is likely to be an overestimate. Flumazenil (1 μ M) failed to significantly alter the effect of 100 μ M apigenin on 40 μ M GABA responses (mean difference in responses: -4.9%, 95% CI: -19.2 to 9.5%, n = 5, t = 1.13, P > 0.05).

Apigenin significantly inhibited the response to 5 μ M GABA at flumazenil-insensitive $\alpha 1\beta 2$ GABA_A receptors (n = 3; F = 39.58, P < 0.0001) with an IC₅₀ of 11.7 μ M (95% CI: 2.8–49.6 μ M). This inhibition reached 60.3%.

Enhancement of 5 μ M GABA responses by 100 nM allopregnanolone was significantly inhibited by 10 μ M or higher doses of apigenin (Fig. 7) at α 1 β 2 γ 2L GABA_A receptors (n=7; F=26.8, P<0.01 and n=5; F=26.15, P<0.01, respectively). Inhibition of allopregnanolone

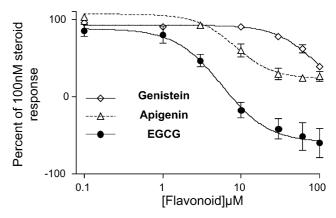


Fig. 7. Inhibition of the allopregnanolone (100 nM) enhancement of GABA (5 μ M) responses by apigenin, EGCG and genistein in oocytes expressing $\alpha 1\beta 2\gamma 2L$ GABA_A receptors.

enhancement by apigenin reached 78% with an IC₅₀ of 8.4 μ M (95% CI: 4.9–14.4 μ M) and a Hill coefficient of – 1.8 \pm 0.5. Enhancement of 5 μ M GABA responses by 30 μ M pentobarbitone was similarly inhibited by apigenin with over 90% inhibition and an IC₅₀ of 22.9 μ M (95% CI: 10.5–50 μ M) and a Hill coefficient of –2.5 \pm 0.5, n = 8. No enhancement of either allopregnanolone or pentobarbitone modulation of GABA responses was seen with apigenin.

3.2. EGCG

EGCG (100 μ M) had no effect when tested on shaminjected oocytes. It did significantly inhibit responses to 40 μ M GABA at α 1 β 2 γ 2L GABA_A receptors (Fig. 3; n = 4; F = 59.3, P < 0.0003) and 20 μ M (n = 4; F = 57.11; P = 0.0003) GABA. Inhibition reached 90.6% and 97% with IC₅₀ values of 14.7 μ M (95% CI: 5.03–43.1 μ M) and 8.7 μ M (95% CI: 3.8–20 μ M) and Hill coefficients of -0.95 ± 0.31 and -1.19 ± 0.39 , respectively.

EGCG (100 μ M) significantly inhibited the GABA dose–response curve at $\alpha 1\beta 2\gamma 2L$ receptors (n=4; F=307.7; P<0.0001), increasing the GABA EC₅₀ by 573% and decreasing the maximum by 70% (Fig. 8). A two-way ANOVA also found a significant interaction effect (F=39.69; P<0.0001). This interaction is due to a preferential inhibition of higher doses of GABA.

EGCG significantly inhibited both diazepam (3 μ M) and allopregnanolone (100 nM) enhancement of GABA (5 μ M) currents at α 1 β 2 γ 2L GABA_A receptors (n = 7; F = 48.4; P < 0.0001; Fig. 6 and n = 4; F = 69.3; P < 0.0002; Fig. 7, respectively). Inhibition of steroid reached 167% (which is below the response due to 5 μ M GABA alone) with an IC₅₀ of 5.7 μ M (95% CI: 4.3–7.5 μ M) and inhibition of diazepam reached 182% (which is also below the response due to 5 μ M GABA alone) with an IC₅₀ of 7 μ M (95% CI: 2.3–21.6 μ M).

As with apigenin, lower concentrations of EGCG enhanced the effects of diazepam (Fig. 6). This enhance-

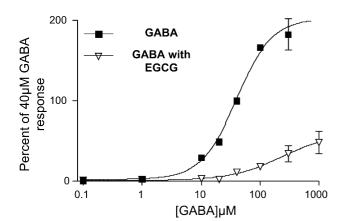


Fig. 8. Inhibition of GABA dose–response curve by 100 μ M EGCG in oocytes expressing $\alpha 1\beta 2\gamma 2L$ GABA_A receptors.

ment reached 52%. At 0.1 μ M EGCG the response was significantly different to control at P < 0.019 (*t*-test). Due to the biphasic response, the calculated IC₅₀ of 7 μ M for the inhibitory phase is probably an overestimate.

Enhancement of 5 μ M GABA responses by 30 μ M pentobarbitone was inhibited by EGCG with over 160% inhibition and an IC₅₀ of 22.1 μ M (95% CI: 4.8–101 μ M) and a Hill coefficient of -0.86 ± 0.5 , n = 8. No enhancement of either allopregnanolone or pentobarbitone modulation of GABA responses was seen with EGCG.

3.3. Catechin and epicatechin

Neither catechin (n=4; F=3.24; P=0.13) nor epicatechin (n=5; 1.49; P=0.28) were able to significantly inhibit currents due to 40 μ M GABA at $\alpha 1\beta 2\gamma 2$ L GABA_A receptors at concentrations ranging from 1 to 100 μ M (Fig. 3) and thus were not tested further.

3.4. Genistein

Genistein (100 μ M) had no effect when tested on shaminjected oocytes. It did significantly inhibit responses to 40 μ M GABA at $\alpha 1\beta 2\gamma 2L$ GABA_A receptors (n=4; F=12.3; P=0.017). This inhibition reached 51% with an IC₅₀ of 29.2 μ M (95% CI: 23.4–36.4 μ M) and Hill coefficient of -5.3 ± 6.2 (Fig. 3) and was not altered by 1 μ M flumazenil (mean difference in responses: -3.44%, n=4, t=0.15, P>0.05). Furthermore, genistein significantly inhibited the response to 5 μ M GABA at $\alpha 1\beta 2$ receptors (n=4; n=1) n=10.11 n=11.12 n=11.13 n=11.14 n=11.15 n=11.15 n=11.16 n=11.17 n=11.17 n=11.17 n=11.17 n=11.18 n=11.19 n=11.

Genistein (100 μ M) significantly inhibited the GABA dose–response curve at $\alpha 1\beta 2\gamma 2L$ GABA_A receptors (Fig. 9, n=5; P<0.003). Neither the EC₅₀ nor the Hill coefficient of GABA was significantly affected, while the maximal GABA-induced current was reduced by 28.3%.

Genistein significantly inhibited diazepam $(3 \mu M)$ and allopregnanolone (100 nM) enhancement of GABA

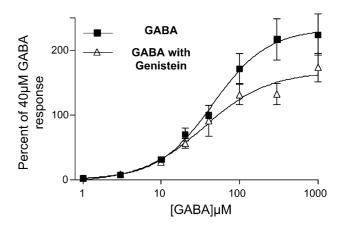


Fig. 9. Inhibition of GABA dose–response curve by 100 μ M genistein in oocytes expressing $\alpha 1\beta 2\gamma 2L$ GABA_A receptors.

(5 μM) currents at α 1β2γ2L GABA_A receptors (n = 6, F = 31.28, P < 0.0001, Fig. 6; n = 5, F = 9.845, P < 0.026, Fig. 7, respectively). Inhibition of diazepam by genistein showed an IC₅₀ of 52 μM (95% CI: 37.7–72.4 μM) and Hill coefficient of -1.83 ± 0.58 . Inhibition of allopregnanolone reached 97% with an IC₅₀ of 83 μM (95% CI: 45.6–152.2 μM) and Hill coefficient of -1.7 ± 0.35 (Fig. 7). Unlike apigenin and EGCG, low doses of genistein did not enhance the effects of diazepam (Fig. 6).

4. Discussion

Apigenin is not a GABA, benzodiazepine or steroid agonist at α1β2γ2L GABA_A receptors expressed in Xenopus laevis oocytes as it did not enhance the effects of a low dose of GABA or produce a response when applied by itself. Nor did it have any effect on sham-injected oocytes and, thus, apigenin is not an agonist at any of the receptors native to the oocyte. However, apigenin at high doses did inhibit the effects of a higher dose of GABA. This effect is most clearly seen by the effects of 30 µM apigenin on the GABA dose–response curve. The blunting of the response to supramaximal doses of GABA (1000 µM) and the change in the Hill coefficient both indicate that apigenin is a non-competitive antagonist of GABA_A receptors. The inhibitory effect of apigenin was not blocked by the benzodiazepine antagonist flumazenil; furthermore, apigenin was a GABA antagonist at flumazenil-insensitive $\alpha 1\beta 2$ receptors. These findings are in agreement with those of Goutman et al. [5] who have shown that apigenin is a flumazenil-insensitive GABA antagonist at $\alpha 1\beta 1\gamma 2S$ GABA_A receptors and at ρ1 GABA_C receptors. This GABA antagonist action is thus independent of classical benzodiazepine modulatory sites.

Low doses of apigenin enhanced the modulatory action of diazepam. This action was observed under conditions of the maximal flumazenil-sensitive enhancement of the action of 5 µM GABA by diazepam. This action was not seen in any other test, including the apigenin doseresponse curves against GABA or against the modulatory action of allopregnanolone. It is unlikely that apigenin mediates the enhancement of the actions of diazepam by enhancing diazepam binding as it is known to inhibit the binding of benzodiazepines to GABA_A receptors [6–8]. Diazepam itself has a biphasic effect at $\alpha 1\beta 2\gamma 2L$ GABA_A receptors [16] that suggests two sites of action. However, at GABA_A receptors containing only α_1 and β_2 subunits, only a high dose effect of diazepam is seen and this effect is not blocked by flumazenil. Thus, it appears that there are at least two sites of action for diazepam on $\alpha 1\beta 2\gamma 2L GABA_A$ receptors—one high affinity site which is sensitive to flumazenil and another low affinity site which is flumazenil-insensitive. Apigenin showed no enhancement of the actions of GABA alone or in the presence of pregnanolone or pentobarbitone in the present study, nor did it effect the binding of the GABA_A agonist muscimol [6]; hence, it is unlikely that the enhancement is due to an enhancement of either the binding of GABA or of its effects independent of diazepam.

Apigenin has been characterised as a centrally acting benzodiazepine ligand with anxiolytic effects [6]. Apigenin was described as having 'a clear anxiolytic effect in mice in the elevated plus maze without evidencing sedation or muscle relaxation effects at doses similar to those used for classical benzodiazepines' and it was devoid of anticonvulsant effects [6]. These findings are in contrast to a later study in rats where apigenin was shown to reduce the latency of onset of picrotoxin-induced convulsions and to reduce locomotor activity but was devoid of anxiolytic or muscle relaxant activities [7]. This later study showed that apigenin could reduce GABA-activated chloride currents in cultured cerebellar granule cells, an action that could be blocked by flumazenil and thus likely to involve a classical negative modulatory ('inverse agonist') action on GABA_A receptors; this was not observed in the present study. The inhibitory action of apigenin on locomotor behaviour, however, could not be blocked by flumazenil and thus could not 'be ascribed to an interaction with GABA_A-benzodiazepine receptors' [7]. Another study from the same group reported that apigenin exerted sedative effects on locomotor activity in rats in a flumazenilinsensitive manner, whereas chrysin, a structurally related flavonoid lacking the 4'-hydroxy substituent of apigenin, showed a clear flumazenil-sensitive anxiolytic effect in addition to the flumazenil-insensitive sedation [17]. The apparent discrepancy between the behavioural effects of apigenin on mice [6] and rats [7] may be due to mice having higher baseline levels of anxiety.

The flumazenil-sensitive effects of apigenin following systemic administration to rodents could be interpreted on the basis of apigenin potentiating the action of endogenous benzodiazepine-like agents, endozepines [18,19]. Evidence for physiologically relevant endozepines has come from the discovery of a mutant GABA_A receptor in child-hood absence epilepsy and febrile seizures that has diminished sensitivity to benzodiazepines with no other apparent alteration in functioning [20]. Overall, it seems that the effects of apigenin on GABA_A receptors are complex and that the behavioural effects of apigenin may involve both flumazenil-sensitive and flumazenil-insensitive components.

EGCG also shares the bimodal action of apigenin against diazepam, enhancing at low flavonoid concentrations and inhibiting at high concentrations. In both the enhancement and inhibition phases, EGCG was more potent than apigenin. EGCG at low doses inhibited the response to 40 μ M GABA and the enhancement of responses to 5 μ M GABA by 100 nM allopregnanolone, 30 μ M pentobarbitone and by 3 μ M diazepam. In all these tests, EGCG was more potent than apigenin, producing a greater degree of inhibition. This supports the hypothesis

that apigenin and EGCG are acting via the same site(s), at which EGCG has either greater affinity or efficacy.

Neither catechin nor its isomer, epicatechin, inhibited the response to 40 µM GABA. These differ from EGCG in two key features—they lack an hydroxy group at the 5' position and they have an hydroxy group at the 3 position rather than the 3-O-gallate group. Assuming that apigenin and EGCG are acting via the same mechanism, the lack of an hydroxy group at the 5' position can be ruled out as the cause of the loss of effect as apigenin also lacks this group. Thus, it is most probably the different group at the 3 position that renders catechin and epicatechin inactive. The 3-O-gallate group of EGCG contains a carbonyl group which may substitute for the 4-carbonyl group of apigenin.

Genistein, the isoflavone equivalent of apigenin, is a phytoestrogen with a wide variety of pharmacological effects on animal cells [21]. Its action as a GABA_A receptor antagonist has been observed by other workers. While it is widely used as a tyrosine kinase inhibitor, its action as a negative modulator of the action of GABA on recombinant GABA_A receptors is the result of a direct action on the receptors and is independent of tyrosine kinase [22,23]. Genistein did not enhance the actions of diazepam at any of the concentrations tested.

The second order modulation by apigenin and EGCG of the maximum first order modulatory action of diazepam of the activation by GABA of GABA_A receptors observed in the present studies may result from these flavonoids altering the coupling of the benzodiazepine allosteric sites with the orthosteric GABA sites on GABA_A receptors. There is evidence from binding studies that the nexus between the benzodiazepine and GABA sites on GABA_A receptors is complex and involves other factors, such as phospholipids, that can be removed from brain membranes by detergent extraction [24]. Apigenin and EGCG may influence the interactions of these other factors with the benzodiazepine and GABA sites.

There have been extensive structure–activity studies aimed at developing models of flavonoid pharmacophores for their interaction with GABA_A receptors [8,25–28]. A problem common to most of these studies is that the activity data is based on ligand binding studies to what is now known to be a mixture of benzodiazepine binding sites and GABA receptor subtypes. Given our increased knowledge of the diversity of benzodiazepine and flavonoid actions on cloned receptors of defined subunit composition, future structure-activity studies need to be based on data from functional studies on GABA_A receptors of known subunit composition. It would be surprising if the novel second order modulatory action of apigenin and EGCG did not show some GABA_A receptor subtype selectivity.

Fruits, vegetables, and beverages such as tea and red wine are major sources of flavonoids in our diet [29]. It has been estimated that the average daily intake of flavonoids from a healthy diet is 1–2 g [30]. They have a wide variety of biological activities and are being studied intensively

especially as anticancer agents [31]. As both apigenin and EGCG have been widely consumed in the diet for generations, it is unlikely that they would have side effects severe enough to prevent their possible use as therapeutic agents alone or in combination with other agents, e.g. in reducing the therapeutic dose of diazepam. Apigenin clearly has CNS effects on systemic administration [6,7] and it is known that EGCG accumulates in the brain following systemic administration [32]. Furthermore, apigenin and EGCG serve as lead compounds for the development of more selective agents for the second order modulation of benzodiazepine enhancement of the action of GABA on GABA_A receptors. The second order modulation of a primary modulator is unlikely to be restricted to the modulation of GABA_A receptors.

Acknowledgements

We are grateful to Dr. Paul Whiting (Merck. Sharpe and Dohme Research Laboratories, Harlow, UK) for the gift of human $\alpha 1$, $\beta 2$ and $\gamma 2L$ cDNA and Dr. Peter Burden (Department of Pharmacology, The University of Sydney, Sydney) for the gift of allopregnanolone, Dr. Hue Tran and Mr. Kong Li for technical assistance, and the National Health and Medical Research Council of Australia for financial support.

References

- Luk KC, Stern L, Weigele M, O'Brien RA, Spirst N. Isolation and identification of "diazepam-like" compounds in bovine brain. J Nat Prod 1983;46:852–61.
- [2] Marder M, Paladini AC. GABA_A receptor ligands of flavonoid structure. Curr Top Med Chem 2002;2:853–67.
- [3] Hall BJ, Chebib M, Hanrahan JR, Johnston GAR. Flumazenil-independent positive modulation of g-aminobutyric acid by 6-methylflavone at human recombinant a1b2g2L and a1b2 GABA_A receptors. Eur J Pharmacol 2004;491:1–8.
- [4] Hanrahan JR, Chebib M, Davucheron NM, Hall BJ, Johnston GAR. Semisynthetic preparation of amentoflavone: a negative modulator at GABA_A receptors. Bioorg Med Chem Lett 2003;13:2281–4.
- [5] Goutman JD, Waxemberg MD, Donate-Oliver F, Pomata PE, Calvo DJ. Flavonoid modulation of ionic currents mediated by GABA_A and GABAC receptors. Eur J Pharmacol 2003;461:79–87.
- [6] Viola H, Wasowski C, Levi de Stein M, Wolfman C, Silvera R, Medina AE, et al. Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Plant Med 1995;61:213–6.
- [7] Avallone R, Zanoli P, Puia G, Kleinschnitz M, Schreier P, Baraldi M. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol 2000;59:1387–94.
- [8] Dekermendjian K, Kahnberg P, Witt MR, Sterner O, Nielsen M, Liljefors T. Structure-activity relationships and molecular modeling analysis of flavonoids binding to the benzodiazepine site of the rat brain GABA_A receptor complex. J Med Chem 1999;42:4343–50.
- [9] Arts IC, Hollman PC, Feskens EJ, Bueno de Mesquita HB, Kromhout D. Catechin intake and associated dietary and lifestyle factors in a representative sample of Dutch men and women. Eur J Clin Nutr 2001;55:76–81.

- [10] Arts IC, van De Putte B, Hollman PC. Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J Agric Food Chem 2000;48:1752–7.
- [11] Meckes M, Calzada F, Tapia-Contreras A, Cedillo-Rivera R. Antiprotozoal properties of Helianthemum glomeratum. Phytother Res 1999;13:102–5.
- [12] Gomez R, Asnis N, Tannhauser SL, Barros H. GABA agonists differentially modify blood glucose levels of diabetic rats. Jpn J Pharmacol 1999;80:327–31.
- [13] Ai JL, Dekermendjian K, Wang XM, Nielsen M, Witt MR. 6-Methylflavone, a benzodiazepine receptor ligand with antagonistic properties on rat brain and human recombinant GABA_A receptors in vitro. Drug Dev Res 1997;41:99–106.
- [14] Zhu M, Phillipson JD, Greengrass PM, Bowery N, CAI Y. Plant polyphenols: biologically active compounds or non-selective binders to protein. Phytochemistry 1997;44:441–7.
- [15] Hossain SJ, Hamamoto K, Aoshima H, Hara Y. Effects of tea components on the response of GABA_A receptors expressed in Xenopus oocytes. J Agric Food Chem 2002;50:3954–60.
- [16] Walters RJ, Hadley SH, Morris KDW, Amin J. Benzodiazepines act on GABA_A receptors via two distinct and separable mechanisms. Nat Neurosci 2000;3:1274–81.
- [17] Zanoli P, Avallone R, Baraldi M. Behavioural characterisation of the flavonoids apigenin and chrysin. Fitoterapia 2000;71:S117–23.
- [18] Yarom M, Tang XW, Wu E, Carlson RG, Vandervelde D, Lee XH, et al. Identification of inosine as an endogenous modulator for the benzodiazepine binding site of the GABA_A receptors. J Biomed Sci 1998;5:274–80.
- [19] Baraldi M, Avallone R, Corsi L, Venturini I, Baraldi C, Zeneroli ML. Endogenous benzodiazepines. Therapie 2000;55:143–6.
- [20] Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchal RG, et al. Mutant GABA_A receptor gamma 2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001;28:49–52.

- [21] Dixon RA, Ferreira D. Genistein. Phytochemistry 2002;60:205-11.
- [22] Dunne EL, Moss SJ, Smart TG. Inhibition of GABA_A receptor function by tyrosine kinase inhibitors and their inactive analogues. Mol Cell Neurosci 1998:12:300–10.
- [23] Huang RQ, Fang MJ, Dillon GH. The tyrosine kinase inhibitor genistein directly inhibits GABA_A receptors. Mol Brain Res 1999;67:177–83.
- [24] Skerritt JH, Willow M, Johnston GAR. Diazepam enhancement of low affinity GABA binding to rat brain membranes. Neurosci Lett 1982;29:63–6.
- [25] Hong X, Hopfinger AJ. 3D-pharmacophores of flavonoid binding at the benzodiazepine GABA_A receptor site using 4D-QSAR analysis. J Chem Inf Comput Sci 2003;43:324–36.
- [26] Huang XQ, Liu T, Gu JD, Luo XM, Ji RY, Cao Y, et al. 3D-QSAR model of flavonoids binding at benzodiazepine site in GABAA receptors. J Med Chem 2001;44:1883–91.
- [27] Kahnberg P, Lager E, Rosenberg C, Schougaard J, Camet L, Sterner O, et al. Refinement and evaluation of a pharmacophore model for flavone derivatives binding to the benzodiazepine site of the GABA_A receptor. J Med Chem 2002;45:4188–201.
- [28] Marder M, Estiu G, Blanch LB, Viola H, Wasowski C, Medina JH, et al. Molecular modelling and QSAR analysis of the interaction of flavone derivatives with the benzodiazepine site of GABA_A receptor complex. Bioorg Med Chem 2001;9:323–35.
- [29] Aherne SA, O'Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutrition 2002;18:75–81.
- [30] Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther 2002;96:67–202.
- [31] Le Marchand L. Cancer preventive effects of flavonoids—a review. Biomed Pharmacother 2002;56:296–301.
- [32] Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H. Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 1998;19:1771-6.